ریاضیات باستان – قسمت پنجم

نوشته شده توسط:کیوان فیض مرندی | ۰ دیدگاه

همچنین «لایبنیتز» رقیب سرسخت او در ستایشی بزرگ منشانه، نیمی از کارهای انجام شده ریاضی بشر تا عهد نیوتن را متعلق به نیوتن می داند. انسانی که در ۲۳ سالگی به درجه ای رسید که می‌توانست مماس و شعاع انحنا در یک نقطه از منحنی را پیدا کند. روشی که امروزه تحت عنوان حساب دیفرانسیل شناخته می شود. در ۲۷ سالگی به استادی دانشگاه برگزیده شد و حدود ۶۵ سال در ریاضیات و فیزیک کار کرد. پاپ دستاوردهای نیوتن را بدین صورت بیان کرده است: «طبیعت و قوانین طبیعت در ظلمت نهفته بودند، ذات باری فرمود نیوتن به وجود آید و همه چیز روشن شد.» البته نیوتن نیز خاضعانه در مقابل ستایشها می گفت که من همچون کودکی در حال بازی در کنار دریا هستم که گاهی صدفهای زیبایی توجهم را جلب می‌کند اما اقیانوسی از حقایق کشف ناشده در مقابلم قرار دارد. یکبار هم گفت که اگر افق دید او گسترده تر از دیگران است بدین علت است که بر دوش غولان ایستاده است و شاید منظور او از غولان، ارشمیدس و امثال او باشند.

کارهای ریاضی او به طور خلاصه به شرح زیر است:

- تالیف کتاب« اصول ریاضی فلسفه طبیعی» که با اصرار «هالی» ستاره شناس معروف و با هزینه او در سال ۱۶۸۷ چاپ شد. این کتاب به مطالعه دستگاه دینامیکی پدیده های زمینی و سماوی می پردازد و یک صورت بندی ریاضی از این پدیده هاست. این کتاب پرنفوذ ترین اثر در تاریخ علم به حساب می آید و تاثیر بسیاری بر دنیای جدید داشت. تاریخ ریاضیات ابتدایی اساساْ با آن پایان می یابد.

- بسط روش بی نهایت کوچکها یا همان حساب دیفرانسیل و نیز روشهای مربوط به سریهای نامتناهی

- بسط روشهای مربوط به ماکزیمم و می نیمم توابع، مماس بر منحنی ها، انحنای منحنی ها، نقاط عطف، تحدب و تقعر منحنی ها، محاسبه مساحتهای زیر منحنی ها و طول قوس آنها

- ارائه روشی برای تقریب زدن مقادیر ریشه های حقیقی یک معادله جبری یا غیر جبری و نیز روشهای زیبایی برای مطالعه منحنی های درجه سوم

لایبنیتز: این نابغه جامع ریاضیات، فلسفه، الاهیات و حقوق، رقیب جدی نیوتن در ابداع حسابان بود. عقیده رایج امروز این است که نیوتن و لایبنیتز، حسابان را مستقل از یکدیگر کشف کردند، اما لایبنیتز نتایج را زودتر انتشار داد، هر چند که کشف نیوتن زودتر انجام شده است، اما متاسفانه مشاجره اسفباری بین این دو بر سر تقدم در کشف حسابان در گرفت و هر کدام خود را موسس حساب دیفرانسیل و انتگرال می دانست. هر دو نیز در این مناقشه زیان دیدند، به ویژه نیوتن و ریاضیدانان همعصر او در انگلستان. البته لازم است ذکر شود که لایبنیتز را بزرگترین نابغه جامع قرن هفدهم می نامند و ظاهراْ تنها شخص شناخته شده تاریخ ریاضیات است که هم در ریاضیات پیوسته و هم در ریاضیات گسسته دارای اندیشه ای عالی بوده است. بد نیست بدانیم که لایبنیتز در واقع یک سیاستمدار و یک دیپلمات بود که برای انجام کارهای سیاسی به کشورهای دیگر سفر می کرد. کارهای او در ریاضیات به طور خلاصه عبارتند از:

- ارائه قسمت مهمی از نمادهای کنونی ما در حساب دیفرانسیل و انتگرال از قبیل نماد dx و dy/dx و علامت انتگرال که از S کشیده Summa -یک کلمه لاتین به معنای مجموع- اقتباس شده است. هم اکنون از نمادهای نیوتن آنچنان استفاده نمی‌شود.

- استخراج بسیاری از قواعد مقدماتی مشتق گیری که معمولاْ در ابتدای درس مشتق در سطوح مختلف دبیرستانی و دانشگاهی آموزش داده میشود. قاعده یافتن مشتق n-ام حاصلضرب دو تابع را قاعده لایبنیتز می نامیم.

- تلاش برای پایه گذاری نظریه پوشها و تعریف دایره بوسان برای اولین بار

- ارائه اولین ایده ها در منطق ریاضی و نظریه مجموعه ها. او مجموعه تهی را مطالعه کرده است و متوجه شباهتهای نظریه مجموعه ها و منطق ریاضی شده است (به طور مثال شباهت قوانین دمرگان در نظریه مجموعه ها و منطق).

- لایبنیتز احتمالا جزو اولین ریاضیدانانی است که نظریه قدرتمند دترمینانها را برای حل دستگاه معادلات خطی پدید آورده اند.

 

ریاضیات در قرن ۱۸ میلادی

این قرن را می‌توان قرن بهره برداری از حسابان نامید. وسیله ای که بلافاصله پس از کشف، قادر به حل مسائلی شد که قبل از آن تسخیر ناپذیر می نمودند. گستردگی کاربرهای آن حتی در مکانیک و نجوم، چنان اعجاب آور بود که اکثر ریاضیدانان این قرن را به خود جذب کرد و باعث تالیف مقالات بسیار شد. متاسفانه دقت کافی نیز در اثبات قضایا منظور نمی شد و کم کم دومین بحران بزرگ تاریخ ریاضیات شکل گرفت (اولین بحران، کشف عدد اصم در یونان باستان بود). این بحران، ورود بعضی از تناقضات عجیب و غریب در ریاضیات بود. مشکلی که بخش بزرگی از فعالیتهای ریاضیدانان قرن نوزدهم، معطوف به حل آن شد. قرن هجدهم شاهد رشد بیش از پیش نظریه احتمال، معادلات دیفرانسیل، هندسه تحلیلی، نظریه اعداد و نظریه معادلات بود. ضمنا در این قرن معادلات دیفرانسیل با مشتقات جزئی، هندسه ترکیبی و هندسه دیفرانسیل نیز پا به عرصه وجود گذاشتند. حال مشابه روشی که در قرن هفدهم پی گرفتیم به معرفی ریاضیدانان بزرگ این قرن می پردازیم؛ با توجه به این نکته که مطالب زیر بسیار کوتاه و کاملا گزینشی هستند. ذکر این نکته نیز لازم است که برای فهم بعضی از مطالب زیر به معلومات دانشگاهی نیازمندیم.

خانواده برنولی: این خانواده سوئیسی، یکی از متشخص ترین خانواده ها در تاریخ ریاضیات بود. سابقه خانوادگی آنها با دوبرادر، یاکوب برنولی و یوهان برنولی آغاز می‌شود و با پسران یوهان به نامهای نیکولاس، دانیل و یوهان II و نیز پسر یوهان II، یوهان III و نوادگان دیگر ادامه می یابد. سابقه خانوادگی آنها را می‌توان از سال ۱۶۵۴ تا ۱۸۶۳ (حدود ۲۱۰ سال) پی گرفت. به جهت اختصار فقط به کارهای دو برادر اول می پردازیم.

- یاکوب برنولی: او کاربردهای مهمی از مختصات قطبی را ارائه نمود، فرمول شعاع انحنای یک منحنی در مختصات دکارتی و قطبی را استخراج کرد، منحنی همزمان را کشف کرد (این منحنی یک سهمی از درجه سه دوم است که مماس در نقطه بازگشت آن قائم است و هر جسم در امتداد آن با سرعت عمودی یکنواختی سقوط میکند)، مساله شکلهای هم پیرامون را طرح نمود (مسیرهای مسطح بسته ای از انواع مفروض که محیط آنها ثابت و مساحت آنها ماکزیمم است) و کتاب معروف فن حدس زدن را در موضوع احتمال ریاضی تالیف کرد. نام او در ریاضیات با توزیع برنولی و قضیه برنولی در آمار و احتمال، معادله برنولی در معادلات دیفرانسیل، اعداد و چند جمله ایهای برنولی در نظریه اعداد و لمینسکات برنولی در حساب دیفرانسیل و انتگرال همراه است. جالب است که بدانیم که کلمه انتگرال را نیز برای اولین بار، یاکوب برنولی به کار برد.

- یوهان برنولی: او به حسابان غنای زیادی بخشید و در شناساندن قدرت آن در اروپا بسیار موثر بود. مقالات متعدد یوهان برنولی را مارکی دو لوپیتال در قالب اولین کتاب درسی حسابان گردآوری و منتشر کرد (بد نیست بدانیم که بعدها قاعده صورت مبهم صفر تقسیم بر صفر به غلط قاعده هوپیتال نام گرفت). محاسبه طول قوس منحنی ها، حسابان توابع توانی و تلاش برای حل دو مساله مهم کوتاهترین زمان و همزمانی که به دست آوردن منحنی هایی با شرایط خاص است، فهرستی از کارهای مهم اوست. ضمنا او یکی از موفقترین معلمین زمان خود بود.

دموآور: آبراهام دموآور یکی از دوستان صمیمی نیوتن بود و با تالیف سه کتاب، نقش مهمی در نظریه آمار و احتمال دارد. بررسی انتگرال احتمالاتی معروف برای اولین بار، بررسی منحنی فراوانی نرمال که c و h ثابت اند و فرمول استرلینگ (که به غلط چنین نامگذاری شده است).

مک لورن: دانشجویان رشته های علوم پایه و مهندسی با دو بسط معروف و بسیار مهم تیلور و مک لورن آشنایی دارند. بسط اول در ۱۷۱۵ و بسط دوم در ۱۷۴۲ معرفی شد. بسط مک لورن چیزی جز تعمیم بسط تیلور نیست و خود تیلور از بسط مک لورن خبر داشت و قبلا آنرا معرفی کرده بود. مک لورن از نوادر عالم ریاضیات بود. در ۱۱ سالگی وارد دانشگاه شد. در ۱۵ سالگی فوق لیسانس گرفت و در ۱۹ سالگی به استادی دانشگاه انتخاب شد. در ۲۱ سالگی کتاب مهم خود - هندسه ذاتی- را منتشر کرد و در ۲۷ سالگی استادیار دانشگاه بود. جالب است بدانیم که نیوتن برای اینکه مشکل پرداخت حقوق او حل شود و او در دانشگاه بماند، مخارج او را شخصا پرداخت می کرد تا دانشگاه از خدمات این نابغه قرن هجدهم بی بهره نماند. مک لورن بعدها جانشین نیوتن شد.

اویلر: لئونهارت اویلر پرتالیف ترین نویسنده در تاریخ ریاضیات است و نام وی در هر شاخه ای از این علم دیده می‌شود. او در طول عمرش۵۳۰ کتاب و مقاله منتشر کرد. حتی نابینایی کامل او که در ۱۷ سال آخر عمر، سراغش آمد، اثری در شدت کار او نگذاشت و به کمک حافظه شگفت انگیز و توانایی تمرکز حواس حتی با وجود سرو صدای زیاد، کار خود را با دیکته کردن به یک منشی و نوشتن فرمولها روی یک تخته بزرگ، ادامه می داد. او شاگرد یوهان برنولی بود و ۳۱ سال در آکادمی سن پترزبورگ و ۲۵ سال در آکادمی پروس به کارهای علمی اشتغال داشت. او خارج از ریاضیات، در فیزیک، نجوم، پزشکی، گیاهشناسی، شیمی، الهیات و زبانهای شرقی استادی برجسته بود و از تاریخ مدنی و ادبی کلیه اعصار و بسیاری از ملل با اطلاع بود و جالب است بدانیم که با این همه کار و مشغله علمی، ۱۳ فرزند داشت!! فیزیکدانی او را چنین معرفی می‌کند: اویلر را می‌توان بدون هیچ اغراقی، تجسم آنالیز دانست. او بی هیچ تلاشی، محاسبات خود را انجام می داد درست به گونه ای که انسان نفس می کشد و عقاب خود را در هوا نگاه می دارد. به خلاصه ای از کارهای اویلر می پردازیم:

- رسمیت یافتن نمادهای برای نماد تابع، e برای پایه لگاریتم طبیعی، r و R به ترتیب برای شعاع دایره محاطی و محیطی مثلث، برای علامت مجموعیابی و i برای واحد انگاری را به او مدیونیم.

- فرمول بسیار مهم نیز از کارهای اوست.

- در هندسه به خط اویلر مثلث برمی خوریم، در نظریه معادلات دانشجو روش اویلر را برای حل معادلات درجه چهارم فرا می گیرد و در نظریه اعداد، تابع فی اویلر نقشی مهم دارد. تابع گاما و بتا نیز منسوب به اویلر هستند. در معادلات دیفرانسیل، معادله معروفی به نام معادله دیفرانسیل اویلر و نیز در معادلات دیفرانسیل جزئی، قضیه اویلر درباره توابع همگن وجود دارد.

- او از اولین کسانی است که کسرهای مسلسل را ایجاد کرد و به طور قابل توجهی نظریه اعداد را غنا بخشید.

- او مقالات زیادی پیرامون تفریحات ریاضی مانند «بازی شطرنج» و «مربعهای لاتین» دارد.

- او در ریاضیات کاربردی مانند نظریه حرکت ماه، کشتی سازی و نظریه موسیقی نیز کار کرده است.

- او کتابهای درسی نیز تالیف می کرد، آنهم با نهایت وضوح، به تفضیل و کامل. کتابهای امروزی دانشگاهی، تقلیدی از سبک نوشتاری اویلر هستند.

    هیچ نظری تا کنون برای این مطلب ارسال نشده است، اولین نفر باشید...